Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.02.442326

ABSTRACT

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.


Subject(s)
COVID-19 , Communicable Diseases
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.06.412759

ABSTRACT

Identification and development of effective drugs active against SARS-CoV-2 are urgently needed. Here, we report on the anti-SARS-CoV-2 activity of MEDS433, a novel inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidines biosynthesis. MEDS433 inhibits in vitro virus replication in the low nanomolar range, and through a mechanism that stems from its ability to block hDHODH activity. MEDS433 thus represents an attractive candidate to develop novel anti-SARS-CoV-2 agents.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.07.413252

ABSTRACT

IntroductionHow cigarette smoke (CS) and chronic obstructive pulmonary disease (COPD) affect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severity is controversial. We investigated the protein and mRNA expression of SARS-CoV-2 entry receptor ACE2 and proteinase TMPRSS2 in lungs from COPD patients and controls, and lung tissue from mice exposed acutely and chronically to CS. Also, we investigated the effects of CS exposure on SARS-CoV-2 infection in human bronchial epithelial cells. MethodsIn Cohort 1, ACE2-positive cells were quantified by immunostaining in FFPE sections from both central and peripheral airways. In Cohort 2, we quantified pulmonary ACE2 protein levels by immunostaining and ELISA, and both ACE2 and TMPRSS2 mRNA levels by RT-qPCR. In C57BL/6 WT mice exposed to air or CS for up to 6 months, pulmonary ACE2 protein levels were quantified by triple immunofluorescence staining and ELISA. The effects of CS exposure on SARS-CoV-2 infection were evaluated after 72hr in vitro infection of Calu-3 cells. After SARS-CoV-2 infection, the cells were fixed for IF staining with dsRNA-specific J2 monoclonal Ab, and cell lysates were harvested for WB of viral nucleocapsid (N) protein. Supernatants (SN) and cytoplasmic lysates were obtained to measure ACE2 levels by ELISA. ResultsIn both human cohorts, ACE2 protein and mRNA levels were decreased in peripheral airways from COPD patients versus both smoker and NS controls, but similar in central airways. TMPRSS2 levels were similar across groups. Mice exposed to CS had decreased ACE2 protein levels in their bronchial and alveolar epithelia versus air-exposed mice exposed to 3 and 6 months of CS. In Calu3 cells in vitro, CS-treatment abrogated infection to levels below the limit of detection. Similar results were seen with WB for viral N protein, showing peak viral protein synthesis at 72hr. ConclusionsACE2 levels were decreased in both bronchial and alveolar epithelial cells from uninfected COPD patients versus controls, and from CS-exposed versus air-exposed mice. CS-pre-treatment did not affect ACE2 levels but potently inhibited SARS-CoV-2 replication in this in vitro model. These findings urge to further investigate the controversial effects of CS and COPD on SARS-CoV2 infection.


Subject(s)
Coronavirus Infections , Adenocarcinoma, Bronchiolo-Alveolar , Pulmonary Disease, Chronic Obstructive , Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.06.413443

ABSTRACT

The novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) enters its host cells after binding to the angiotensin-converting enzyme 2 (ACE2) via its spike glycoprotein. This interaction is critical for virus entry and virus-host membrane fusion. Soluble ACE2 ectodomains bind and neutralize the virus but the short in vivo half-lives of soluble ACE2 limits its therapeutic use. Fusion of the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain can prolong the in vivo half-life but bears the risk of unwanted Fc-receptor activation and antibody-dependent disease enhancement. Here, we describe optimized ACE2-Fc fusion constructs that avoid Fc-receptor binding by using IgG4-Fc as a fusion partner. The engineered ACE2-IgG4-Fc fusion proteins described herein exhibit promising pharmaceutical properties and a broad antiviral activity at single-digit nanomolar concentration. In addition, they allow to maintain the beneficial enzymatic activity of ACE2 and thus are very promising candidate antivirals broadly acting against coronaviruses.


Subject(s)
Immunologic Deficiency Syndromes , Respiratory Insufficiency
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.07.414292

ABSTRACT

Viral zoonoses are a serious threat to public health and global security, as reflected by the current scenario of the growing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases. However, as pathogenic viruses are highly diverse, identification of their host ranges remains a major challenge. Here, we present a combined computational and experimental framework, called REceptor ortholog-based POtential virus hoST prediction (REPOST), for the prediction of potential virus hosts. REPOST first selects orthologs from a diverse species by identity and phylogenetic analyses. Secondly, these orthologs is classified preliminarily as permissive or non-permissive type by infection experiments. Then, key residues are identified by comparing permissive and non-permissive orthologs. Finally, potential virus hosts are predicted by a key residue-specific weighted module. We performed REPOST on SARS-CoV-2 by studying angiotensin-converting enzyme 2 orthologs from 287 vertebrate animals. REPOST efficiently narrowed the range of potential virus host species (with 95.74% accuracy).


Subject(s)
Severe Acute Respiratory Syndrome
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.22.308783

ABSTRACT

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.


Subject(s)
Growth Disorders , Pain , Severe Acute Respiratory Syndrome , COVID-19 , Vesicular Stomatitis , Neoplasms , Neuralgia
SELECTION OF CITATIONS
SEARCH DETAIL